Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tobias Van Almsick and William S. Sheldrick*

Lehrstuhl für Analytische Chemie, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany

Correspondence e-mail: william.sheldrick@rub.de

Key indicators

Single-crystal X-ray study T = 292 K Mean σ (C–C) = 0.018 Å R factor = 0.052 wR factor = 0.123 Data-to-parameter ratio = 18.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis[(1,4,7,10,13,16-hexaoxocyclooctadecane)caesium(I)] di- μ_2 -diselenido-bis[selenidoarsenate(III)]

The title compound, $[Cs(C_{12}H_{24}O_6)]_2[As_2Se_6]$, contains two independent centrosymmetric $[As_2Se_6]^{2-}$ counter-anions, in which AsSe₃ pyramids are linked by two Se–Se bonds into a chair-shaped six-membered ring. Four of the Se atoms of the first $[As_2Se_6]^{2-}$ anion coordinate the Cs atoms of dimeric $[\{Cs(18-crown-6)\}_2(\mu-As_2Se_6)]$ units that are joined by additional O···Cs interactions into polymeric sheets. In contrast, all six Se atoms of the second $[As_2Se_6]^{2-}$ anion coordinate Cs atoms within discrete $[\{Cs(18-crown-6)\}_2(\mu-As_2Se_6)]$ dimers.

Comment

In contrast to the rich structural diversity exhibited by both thioarsenates(III) and thio- and selenidoantimonates(III) (Sheldrick & Wachhold, 1998; Sheldrick, 2000), only a very limited number of structural types are known for the corresponding selenidoarsenates(III) containing two or more arsenic atoms. These all contain AsSe₃ pyramids as building units, which are typically connected by shared corners or Se-Se bonds into either discrete ring-shaped anions or infinite chains. Only one example of edge-sharing of AsSe₃ pyramids has been reported, namely in the *trans*- $[As_2Se_4]^{2-}$ anions of Ba₂As₂Se₅ (Cordier et al., 1985), a phase which also contains isolated [AsSe₃]³⁻ anions. Although [As₃Se₆]³⁻ anions with a chair-shaped As₃Se₃ ring have been structurally characterized in both $[Sr(en)_4]_2As_3Se_6Cl$ (en = ethylenediamine; Sheldrick & Kaub, 1985) and $[Mn(dien)_2]_3[As_3Se_6]_2$ (dien = diethylenetriamine; Fu et al., 2005), many more examples containing the bis[(μ_2 -diselenido)selenidoarsenate(III)] anion $[As_2Se_6]^{2-}$ have been isolated in the presence of larger counter-cations. This likewise chair-shaped dimeric anion comprises two AsSe₃ pyramids connected by two Se-Se bonds and has been reported in (NEt₄)₂[As₂Se₆] (Smith et al., 1998), (PPh₄)₂[As₂Se₆] (Ansari et al., 1992), (PPh₄)₂[As₂Se₆]--2CH₃CN (Czado & Müller, 1998), [M(en)₃][As₂Se₆] (Fu *et al.*, 2005) and $[Na(2.2.2-crypt)]_2[As_2Se_6]$ [2.2.2-crypt = 4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo(8.8.8)hexacosane; Belin & Charbonnel, 1982]. The known structurally characterized polymeric selenidoarsenates(III) are restricted to the phases $AAsSe_2$ [A = Na (Eisenmann & Schäfer, 1979) and A = K-Cs (Sheldrick & Häusler, 1988)] and $AAsSe_3.xH_2O$ $(A = K, x = 1; A = Rb \text{ and } Cs, x = \frac{1}{2}; \text{ Sheldrick & Kaub, 1986}).$ Whereas the [AsSe2]⁻ chains of the former phases contain corner-bridged AsSe₃ pyramids, these building units are connected by Se-Se bonds in the [AsSe₃]⁻ chains of the latter selenidoarsenates(III).

From the above list, it is apparent that the discrete $[As_3Se_6]^{3-}$ and $[As_2Se_4]^{2-}$ anions have all previously been isolated in the presence of voluminous counter-cations, whose central atoms exhibit either tetrahedral or octahedral binding

Received 21 October 2005 Accepted 24 October 2005 Online 31 October 2005

metal-organic papers

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

metal-organic papers

environments. As not only the charge and size but also the shape of the counter-cations are known to influence the connectivity and nuclearity of main group chalcogenidometalate anions (Sheldrick & Wachhold, 1998; Sheldrick, 2000), we considered it to be of interest to employ the [Cs(18-crown-6)]⁺ cation (18-crown-6 = 1,4,7,10,13,16-hexaoxocyclooctadecane), in which the Cs⁺ exhibits a coordination deficit.

The title compound $[Cs(18-crown-6)]_2[As_2Se_6]$, (I), once contains crystallographically centrosymmetric again $[As_2Se_6]^{2-}$ anions, but, in contrast to the previously characterized examples, these now participate directly in the coordination sphere of the counter-cations (Table 1). As illustrated in Figs. 1 and 2, the independent caesium cations of (I), Cs1 and Cs2, are both coordinated by six O atoms of an 18crown-6 macrocycle and lie, respectively, 1.41 (1) and 1.35 (1) Å from the mean planes of these atoms. Atom Cs1 is coordinated by the bridging Se1 atom and the terminal Se3 atom of the first $[As_2Se_6]^{2-}$ anion. In contrast, all three crystallographically independent Se atoms of the second centrosymmetric $[As_2Se_6]^{2-}$ anion participate in the ninefold coordination of Cs2, leading to the formation of [{Cs(18crown-6- $\kappa^6 O$ }₂(μ -As₂Se₆- κ^6 Se)] dimeric units. The likewise ninefold coordination environment of atom Cs1 is completed by atom O7 from a symmetry-related crown ether, thereby generating polymeric $[{Cs(18-crown-6-\kappa^7 O)}_2(\mu-As_2Se_6 \kappa^4$ Se)] sheets (Fig. 3). As illustrated by the packing diagram of

Figure 1

The coordination of Cs1 in (I). Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (ii) -x + 1, -y, -z.]

The coordination of Cs2 in (I). Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (iii) -x + 1, -y, -z + 1.]

Fig. 4, such sheets are separated by layers of [{Cs(18-crown-6- $\kappa^6 O$)}₂(μ -As₂Se₆- κ^6 Se)] dimers in the crystal structure of (I). The metrical details for the [As₂Se₆]²⁻ anions are consistent with those reported for other salts of [As₂Se₆]²⁻.

Our present results suggest that the lower charge of $[As_2Se_6]^{2-}$ in comparison to $[As_3Se_6]^{3-}$ or species of higher nuclearity will lead to the former anion being the preferred partner of large monocations, even when these exhibit an initial coordination deficit.

Experimental

As (37.41 mg, 0.5 mmol), Se (98.7 mg, 1.25 mmol), 18-crown-6 (66.08 mg, 0.25 mmol) and Cs_2CO_3 (126.92 mg, 0.5 mmol) were

heated to 393 K in methanol (0.4 ml) in a sealed glass tube. After 80 h, the solution was cooled to 293 K at 2 K h^{-1} to afford [Cs(18-crown-6)]₂[As₂Se₆], (I), in 47% yield.

 $D_x = 2.161 \text{ Mg m}^{-3}$

Cell parameters from 36

4539 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

reflections

 $\theta = 4.6 - 17.1^{\circ}$ $\mu = 8.24 \text{ mm}^{-1}$

T = 292 (2) K

Prism, orange $0.23 \times 0.19 \times 0.14 \text{ mm}$

 $R_{\rm int} = 0.059$ $\theta_{\rm max} = 25.1^{\circ}$

 $h = 0 \rightarrow 26$

 $k = 0 \rightarrow 10$ $l = -28 \rightarrow 27$

3 standard reflections

every 100 reflections

intensity decay: 20%

 $w = 1/[\sigma^2(F_0^2) + (0.061P)^2]$

 $(\Delta/\sigma)_{\text{max}} = 0.001$ $\Delta\rho_{\text{max}} = 0.70 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -1.25 \text{ e } \text{\AA}^{-3}$

where $P = (F_0^2 + 2F_c^2)/3$

Extinction correction: SHELXL97

Extinction coefficient: 0.00070 (7)

Crystal data

 $[Cs(C_{12}H_{24}O_6)]_2[As_2Se_6]$ $M_r = 1418.04$ Monoclinic, $P2_1/n$ a = 21.930 (4) Å b = 8.4753 (17) Å c = 24.041 (5) Å $\beta = 102.77$ (3)° V = 4357.8 (15) Å³ Z = 4

Data collection

Siemens P4 four-circle diffractometer ω scans Absorption correction: ψ scan (XPREP in SHELXTL-Plus; Sheldrick, 1995) $T_{min} = 0.175, T_{max} = 0.315$ 7836 measured reflections 7578 independent reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.052$ $wR(F^2) = 0.123$ S = 0.947578 reflections 416 parameters H-atom parameters constrained

Table 1Selected geometric parameters (Å, $^{\circ}$).

Cs1-O16	2.997 (8)	Cs2-O210	2.999 (6)
Cs1-O4	3.087 (7)	Cs2-O204	3.044 (6)
Cs1-O10	3.107 (8)	Cs2-O216	3.064 (6)
Cs1-O13	3.214 (8)	Cs2-O201	3.195 (6)
Cs1-O1	3.220 (8)	Cs2-O213	3.196 (6)
Cs1-O7	3.236 (7)	Cs2-O207	3.206 (7)
Cs1-O7 ⁱ	3.484 (8)	Cs2-Se23	3.7502 (16)
Cs1-Se1	3.9297 (15)	Cs2-Se21	3.7557 (15)
Cs1-Se3	3.9836 (17)	Cs2-Se22	3.8090 (17)
As1-Se3	2.2833 (16)	As2-Se23	2.2762 (18)
As1-Se1	2.4210 (16)	As2-Se22	2.4364 (19)
As1-Se2	2.4214 (17)	As2-Se21	2.4404 (17)
Se1-Se2 ⁱⁱ	2.3466 (16)	Se21-Se22 ⁱⁱⁱ	2.3543 (16)
Se2-Se1 ⁱⁱ	2.3466 (16)	Se22–Se21 ⁱⁱⁱ	2.3543 (16)
Se3-As1-Se1	93.29 (6)	Se23-As2-Se22	92.26 (6)
Se3-As1-Se2	98.06 (6)	Se23-As2-Se21	98.32 (6)
Se1-As1-Se2	100.22 (6)	Se22-As2-Se21	102.41 (6)
Se2 ⁱⁱ -Se1-As1	103.69 (6)	Se22 ⁱⁱⁱ -Se21-As2	100.73 (6)
Se1 ⁱⁱ -Se2-As1	97.77 (6)	Se21 ⁱⁱⁱ -Se22-As2	105.54 (6)
Symmetry codes:	(i) $-x + \frac{3}{2}, y - \frac{1}{2}$	$\frac{1}{2}, -z + \frac{1}{2};$ (ii) $-x + 1$	1, -y, -z; (iii)

⁻x + 1, -y, -z + 1.

A steady decrease in the average intensity of three monitor reflections up to a final value of 20% was observed during the course of data collection. The crystal changed in colour from orange to black, presumably due to the release of selenium.

H atoms were treated as riding, with C–H = 0.97 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. The deepest hole in the final difference Fourier synthesis is 1.13 Å from Cs2.

Figure 4

Projection of the structure of (I) along [010], with the following colouring scheme: caesium, red left-hatched sphere; oxygen, blue dotted sphere; carbon, black sphere; arsenic, red hatched sphere; selenium, orange hatched sphere. H atoms have been omitted.

Data collection: *R3m/V* (Siemens, 1989); cell refinement: *R3m/V*; data reduction: *XDISK* (Siemens, 1989); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL-Plus* (Sheldrick, 1995); software used to prepare material for publication: *SHELXL97*.

References

- Ansari, M. A., Ibers, J. A., O'Neal, S. C., Pennington, W. T. & Kolis, J. W. (1992). Polyhedron, 11, 1877–1881.
- Belin, C. H. E. & Charbonnel, M. M. (1982). Inorg. Chem. 21, 2504-2506.
- Cordier, G., Schwidetzky, C. & Schäfer, H. (1985). Rev. Chim. Miner. 22, 93– 100.
- Czado, W. & Müller, U. (1998). Z. Anorg. Allg. Chem. 624, 239-243.
- Eisenmann, B. & Schäfer, H. (1979). Z. Anorg. Allg. Chem. 456, 87-94.
- Fu, M.-L., Guo, G.-C., Liu, X., Liu, B., Cai, L.-Z. & Huang, J.-S. (2005). Inorg. Chem. Commun. 8, 18–21.
- Sheldrick, G. M. (1995). SHELXTL-Plus. Release 5.03 for Siemens R3 Crystallographic Research System. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, W. S. (2000). J. Chem. Soc. Dalton Trans. pp. 3041-3052.
- Sheldrick, W. S. & Häusler, H.-J. (1988). Z. Anorg. Allg. Chem. 561, 139-148.
- Sheldrick, W. S. & Kaub, J. (1985). Z. Naturforsch. Teil B, 40, 1020-1022.
- Sheldrick, W. S. & Kaub, J. (1986). Z. Anorg. Allg. Chem. 535, 179-185.
- Sheldrick, W. S. & Wachhold, M. (1998). Coord. Chem. Rev. 176, 211-322.
- Siemens (1989). R3m/V (Version 3.2) and XDISK. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Smith, D. M., Pell, M. A. & Ibers, J. A. (1998). Inorg. Chem. 37, 2340-2343.